
1 WASTE Documentation

WASTE DOCUMENTATION

Written by: Marco Piovanelli (<URL:mailto:piovanel@dsi.unimi.it>)
Version: 1.1b1, June 1995

Copyright © 1994-1995 Marco Piovanelli

This document describes WASTE, a WorldScript™-Aware Styled Text Engine for the Macintosh
which can be used as the basis for simple to moderately complex applications dealing with styled
text.
WASTE has been designed from the very beginning to be compatible with TextEdit and TextEdit-
based applications, although not everything you can do with TextEdit can be done with WASTE and
vice versa.
The main features of WASTE are:

• Memory-based editor, with no limit imposed on text size.
• Requires System 7.0 or newer.
• WorldScript™-aware, with one major exception: bidirectional scripts (Arabic and Hebrew) are
not currently supported.
• Allows full justification of text.
• Uses offscreen graphics worlds to achieve smooth text redrawing.
• Built-in support for inline input.

Version 1.1 of WASTE adds:

• Several bugs fixes ;-)
• A mechanism for embedding pictures and other “objects” in the text.
• Support for Macintosh Drag and Drop.
• Built-in undo routines.
• Hooks for customizing text drawing and measuring.

This document assumes that you are familiar with the TextEdit model and with text handling on
the Macintosh in general, including the Script Manager and the Text Services Manager.

WASTE Documentation 1

2 WASTE Documentation

A Brief Overview of WASTE

This section gives you a general overview of WASTE and of what it can do for your application.
Since WASTE is so similar to TextEdit, a special emphasis is given to those areas in which the two
models diverge.

WASTE data structures

WASTE header files contain very few type declarations, since all internal data structures are
private and cannot be accessed directly. There is no type declaration for the internal format of a
WE instance, the WASTE conterpart to a TextEdit edit record. Instead you refer to a WE instance
via an opaque handle. This allows future versions of WASTE to add new functionality and new data
structures painlessly, without breaking existing applications.
You should make no assumptions as to how style and line-layout information is represented
internally, but you can count on the text being stored as a single relocatable block, to which you
can obtain a handle. This maximizes compatibility with existing TextEdit-based applications which
rely heavily on this assumption.

Long Coordinates

To allow for text taller than 32,767 pixels (a serious limitation of the TextEdit model), WASTE uses
long (32-bit) coordinates to identify positions within the destination rectangle. This should not
constitute a problem for your application, but be careful if you use a vertical scroll bar!
WASTE comes with an extensive set of utility functions to deal with long coordinates.

How WASTE supports inline input

Support for inline input is built in WASTE so that your application can be friendly to users of
double-byte script systems with a minimal contribution of code.
Starting from version 7.1 of the system software, applications interface to inline input methods
through the Text Services Manager (TSM). TSM routines for use by applications can be roughly
divided into two sets: those which refer to TSM documents and those who don’t. WASTE is
designed to handle internally all routines from the first set, as a TSM document record is
automatically associated with each WE instance. Furthermore WASTE implements all required
Apple event handlers and is responsible for properly highlighting ranges in the active input area.
Your application retains responsibility for a set of just four calls, namely
InitTSMAwareApplication, CloseTSMAwareApplication, TSMEvent and SetTSMCursor.
Your application may optionally install callback routines to monitor calls to the main TSM Apple
event handler (kUpdateActiveInputArea).

Embedded Objects

WASTE 1.1 implements a mechanism to embed “objects” in the text stream as if they were
ordinary glyphs. In its present, rudimentary form, this mechanism is essentially meant for inline
pictures, but you can embed other data types as well, like sounds, and in a future version maybe
even QuickTime™ movies.

WASTE Documentation 2

3 WASTE Documentation

Embedded objects are referenced by opaque handles of type WEObjectReference. The properties
of an object are its type tag (e.g. “PICT”), its size (height and width, in pixels), a handle to the
actual object data (e.g., a picture handle for PICT objects) and an optional “reference constant” for
use by your application. For each object type you want to support, you install handlers to create
new objects, to destroy them and to draw them (the first handler is called when a new object is to
be created from a raw data handle coming from the Clipboard, from a drag or from a direct call to
WEInsertObject). You can install an optional handler to intercept mouse clicks on a selected
object.
Embedded objects can be involved in Clipboard operations and in drags, either by themselves or as
part of a text stream. A special data type, called SOUP, is used by WASTE to complement the
standard TEXT/styl data types. A soup handle describes zero or more objects embedded in the
text stream it accompanies, their types, their sizes and the offsets where they are to be inserted.

How WASTE supports Macintosh Drag and Drop

When the Drag Manager is available, WASTE modifies the behavior of some of its routines so that
clicking in the selection and dragging automatically starts a drag. It is up to your application,
however, to install handlers to track and receive drags. Your handlers, in turn, can call special
WASTE routines to provide standard feedback while tracking and to insert the contents of a drag
into a WE instance. Both styled text and embedded graphics can be dragged to and from a WE
instance, and even a mixture of the two.
NOTE: WASTE exploits the delayed data delivery feature of the Drag Manager to boost
performance and reduce storage needs, but version 1.0 of the Clipping Extension doesn’t seem to
work correctly with “lazy drags”, so please use version 1.1 or newer of the Macintosh Drag and
Drop package.

Built-in Undo

WASTE can undo the changes made to the text (including changes affecting text styles and
embedded objects) by some WASTE calls like WEKey, WECut and WEClick (the latter can cause text
to be moved, copied or deleted by a drag-and-drop operation). This feature can be enabled or
disabled at any time. Undoable operations include typing, cutting, pasting, dragging and more:
see the reference section to find out which calls are undoable and, as such, modify the contents of
the internal undo buffer associated with each WE instance. Carrying out an undoable operation
when undo is enabled destroys the previous contents of the undo buffer, i.e. there is only one
“level” of undo.
As a further help for your application, WE instances keep track of an internal modification count
that lets your application find whether a given WE instance is “clean” or “dirty”.

Where WASTE differs from the TextEdit model

Some subtle and not-so-subtle differences between WASTE and TextEdit are listed below. Most of
them are deliberate design choices.

• WASTE keeps track internally of whether the anchor point of the selection range is at the
beginning or at the end; when extending a selection (either by shift-clicking or by using shift +
arrow keys), what moves is the free endpoint of the selection, but never the anchor point. Your
application can control which boundary of the selection range is treated as the anchor point using
WESetSelection as described in the reference section.

WASTE Documentation 3

4 WASTE Documentation

• To select a range of words, you can double click the first word, then shift-click the last word. The
first word clicked becomes the anchor word of the selection range. In the same way, you can
select a range of

WASTE Documentation 4

5 WASTE Documentation

lines by triple clicking the first line and shift-clicking the last one, and the first line clicked
becomes the anchor line of the selection range.

• WASTE never draws the highlighting outside the destination rectangle, while TextEdit may
highlight portions of the view rectangle outside the destination rectangle.

• TextEdit’s autoscrolling works on a minimum effort basis (scroll as much as necessary to bring
the selection into view, but no more). On the other hand, WASTE tries to keep the selection
centered in the middle of the view rectangle.

• TextEdit honors the clip region of the graphics port it draws into, whereas WASTE resets the clip
region to the view rectangle.

WASTE Documentation 5

6 WASTE Documentation

WASTE Reference
This sections describes all WASTE routines and their parameters in depth.

WEInstallTSMHandlers

Installs Apple event handlers for supporting inline input in the current application’s Apple event
dispatch table.

pascal OSErr WEInstallTSMHandlers(void);

DESCRIPTION
WEInstallTSMHandlers installs the Apple event handlers required for supporting inline input in
the current application’s Apple event dispatch table. You should call this function if your
application is TSM aware.
After the Apple event handlers have been installed, input methods can communicate with a WE
instance without the intervention of your application.

RESULT CODES
noErr 0 No error
memFullErr -108 Out of memory

WERemoveTSMHandlers

Removes the Apple event handlers previously installed by WEInstallTSMHandlers.

pascal OSErr WERemoveTSMHandlers(void);

DESCRIPTION
WERemoveTSMHandlers removes the Apple event handlers required to support inline input which
were previously installed by WEInstallTSMHandlers.

RESULT CODES
noErr 0 No error
errAEHandlerNotFound -1717 TSM handlers were not installed

WENew

Creates a new WE instance and returns a handle to it.

pascal OSErr WENew(const LongRect *destRect, const LongRect *viewRect,
short flags, WEHandle *hWE);

Field descriptions
destRect The initial destination rectangle.
viewRect The initial view rectangle.

WASTE Documentation 6

7 WASTE Documentation

flags Miscellaneous flags.
hWE Pointer to a variable of type WEHandle.

DESCRIPTION
WENew creates a complete text editing environment associated with the current graphics port. You
specify the initial destination and view rectangles in the local coordinates of the current graphics
port, expressed in long coordinates. The value of destRect.bottom is immaterial, since it is
dynamically updated whenever line breaks are recalculated so that (destRect.bottom -
destRect.top) is always equal to the total pixel height of the text, including any blank lines at its
end.
The initial style attributes (font, size, QuickDraw styles and color) are copied from the current
graphics port. The initial alignment style is weFlushDefault. The initial activation state is
inactive.
The flags parameter allows you to enable certain features on creation instead of calling
WEFeatureFlag. One of the flags, weDoUseTempMem, instructs WENew to allocate the main data
structures preferably from temporary memory and is only meaningful when passed to WENew (it
does nothing when passed to WEFeatureFlag).
If the Text Services Manager is available and the client application is TSM-aware (i.e.,
InitTSMAwareApplication has been called successfully), WENew automatically associates the new
instance with a TSM document record.

RESULT CODES
noErr 0 No error
memFullErr -108 Out of memory

WEDispose

Disposes of a WE instance and of all associated data structures.

pascal void WEDispose(WEHandle hWE);

Field descriptions
hWE The WE instance.

DESCRIPTION
WEDispose releases all memory associated with a given WE instance, including the text handle. If
you want to retain the text, you can either clone the text handle using HandToHand or call
WESetInfo with selector set to weText and *info set to 0 immediately before calling WEDispose.

WEGetDestRect / WESetDestRect / WEGetViewRect / WESetViewRect

Get and set the values of the destination rectangle and the view rectangle.

pascal void WEGetDestRect(LongRect *destRect, WEHandle hWE);
pascal void WESetDestRect(const LongRect *destRect, WEHandle hWE);
pascal void WEGetViewRect(LongRect *viewRect, WEHandle hWE);
pascal void WESetViewRect(const LongRect *viewRect, WEHandle hWE);

Field descriptions

WASTE Documentation 7

8 WASTE Documentation

destRect Pointer to the destination rectangle.
viewRect Pointer to the view rectangle.

WASTE Documentation 8

9 WASTE Documentation

hWE The WE instance.

DESCRIPTION
These functions allow you to get and set the destination rectangle and the view rectangle
associated with the specified WE instance. The rectangles are in local coordinates. As in the
TextEdit model, the destination rectangle is the area in which the text is drawn (the width of this
rectangle specifies the line width used to wrap the text), while the view rectangle is the portion in
which the text is actually displayed. All drawing is clipped to the intersection of these two
rectangles.
When the text is scrolled, the destination rectangle is automatically offset by the scrolling amount;
the view rectangle is never changed save by a call to WESetViewRect. The only reason for using
long coordinates is to allow for text taller than 32,767 pixels when scrolling, but both the view
rectangle and the horizontal coordinates of the destination rectangle must always be limited to the
QuickDraw range (-32767 to 32767).
A call to WESetDestRect which alters the line width does not automatically trigger the
recalculation of line breaks: you must call WECalText.

WEGetAlignment / WESetAlignment

Get and set the alignment style associated with a given WE instance.

enum {
weFlushLeft = -2,
weFlushRight,
weFlushDefault,
weCenter,
weJustify

}

pascal char WEGetAlignment(WEHandle hWE);
pascal void WESetAlignment(char alignment, WEHandle hWE);

Field descriptions
alignment The alignment style.
hWE The WE instance.

DESCRIPTION
Use WEGetAlignment and WESetAlignment to get and set the alignment style associated with the
specified WE instance. The alignment style applies to the whole text and can be one of the five
values listed above. The WESetAlignment call does not affect the internal undo buffer in any way.
WeFlushDefault (the default value) aligns the text according to the current setting of the system
global variable SysDirection (previously known as TESysJust): if you change the value of
SysDirection, you should force a redraw of all WE instances set to this alignment style.
WeJustify aligns the text in the destination rectangle to both left and right margins. The specific
way this effect is achieved is script-dependent.

SPECIAL CONSIDERATIONS
If your application will never need anything but left-aligned text, setting the alignment to
weFlushLeft soon after creating a new WE instance is a good idea. Doing so disables some of the
line layout calculations routinely performed by WASTE, effectively speeding up several calls,
notably WECalText.

WASTE Documentation 9

10 WASTE Documentation

WEGetText

Returns a handle to the text associated with a given WE instance.

pascal Handle WEGetText(WEHandle hWE);

Field descriptions
hWE The WE instance.

DESCRIPTION
WEGetText returns a handle to the text associated with the specified WE instance; this handle
contains the raw character codes without any formatting information (this information is stored
elsewhere).
This handle belongs to the WE instance; you should not destroy it or modify it in any way.

WEGetTextLength

Returns the length of the text, in bytes.

pascal long WEGetTextLength(WEHandle hWE);

Field descriptions
hWE The WE instance.

DESCRIPTION
WEGetTextLength returns the length of the text, in bytes, initially zero.

WEGetChar

Returns the character code at a given byte offset.

pascal short WEGetChar(long offset, WEHandle hWE);

Field descriptions
offset The byte offset to the desired character code.
hWE The WE instance.

DESCRIPTION
WEGetChar returns the character code at a given offset inside the text handle associated with the
specified WE instance. This routine always returns byte values, so when dealing with double-byte
characters, it returns only one half of the character. Use WECharByte to determine the byte type of
the character code at a given offset. If an invalid offset is specified, WEGetChar returns zero.

WASTE Documentation 10

11 WASTE Documentation

WECharByte

Returns the byte type (smSingleByte, smFirstByte or smLastByte) of the character code at the
specified offset.

WASTE Documentation 11

12 WASTE Documentation

pascal short WECharByte(long offset, WEHandle hWE);

Field descriptions
offset The byte offset to the desired character code.
hWE The WE instance.

DESCRIPTION
WECharByte returns the byte type of the character code at a given offset inside the text handle
associated with the specified WE instance. If an invalid offset is specified, WECharByte returns
smSingleByte.

WECharType

Returns the character type of the character code at the specified offset.

pascal short WECharType(long offset, WEHandle hWE);

Field descriptions
offset The byte offset to the desired character code.
hWE The WE instance.

DESCRIPTION
WECharType returns the character type of character code at a given offset inside the text handle
associated with the specified WE instance. If an invalid offset is specified, WECharType returns
zero.

WEGetRunInfo

Returns style information associated with the text run containing the specified offset.

typedef struct WERunInfo {
long runStart;
long runEnd;
short runHeight;
short runAscent;
TextStyle runStyle;
WEObjectReference runObject;

} WERunInfo;

pascal void WEGetRunInfo(long offset, WERunInfo *runInfo, WEHandle hWE);

Field descriptions
offset The byte offset to the desired character code.
runInfo Pointer to a record where the requested information is returned.
hWE The WE instance.

DESCRIPTION
WEGetRunInfo returns a WERunInfo record which describes the style attributes associated with the

WASTE Documentation 12

13 WASTE Documentation

style run the specified offset belongs to. This record specifies the boundaries of the style run, font
metrics information and style attributes proper. The runObject field can be either NULL or a
reference to an

WASTE Documentation 13

14 WASTE Documentation

embedded object (each embedded object is treated by WASTE like a one-character wide style run).
When called for the last style run in the text, WEGetRunInfo returns textLength + 1 in runEnd,
instead of textLength.

WEContinuousStyle

Determines which text attributes are continuous over the current selection range.

pascal Boolean WEContinuousStyle(short *mode, TextStyle *ts, WEHandle hWE);

Field descriptions
mode Pointer to a selector. On input, the selector specifies the attributes to test.

On output, the selector specifies the attributes continuous over the selection
range.
ts Pointer to a TextStyle record set to the continuous attributes.
hWE The WE instance.

DESCRIPTION
Call WEContinuousStyle to determine whether a given set of text attributes is continuous over the
selection range. On input, you specify in mode which attributes are to be tested for
continuousness. On output, mode specifies which ones were found to be continuous over the
current selection range and the corresponding fields of ts are set to the continuous attributes.
The function result is TRUE if all tested attributes are continuous, FALSE otherwise.
On output, the weDoFace bit is set in mode if at least one QuickDraw style is continuous over the
selection range: in this case ts.tsFace specifies only the continuous styles. If weDoFace is set and
ts.tsFace is zero (i.e., the empty set), then the whole selection range is plain text.
If the selection range is empty, the returned attributes are copied from an internal null style
record which holds the styles to be applied to the next character typed.
If WEContinuousStyle detects that the keyboard script has changed since the null style record was
last updated, it changes the font in the null style record to match the new keyboard script. The
new font is searched among the fonts preceding the insertion point; if none is found, the default
application font for the keyboard script is used.

EXAMPLES
short mode;
TextStyle ts;

mode = weDoAll; // check all attributes
WEContinuousStyle(&mode, &ts, hWE); // ignore function result

if (mode & weDoFont)
MyCheckFontMenu(ts.tsFont);

if (mode & weDoSize)
MyCheckSizeMenu(ts.tsSize);

if (mode & weDoFace)
MyCheckStyleMenu(ts.tsFace);

WASTE Documentation 14

15 WASTE Documentation
if (mode & weDoColor)

WASTE Documentation 15

16 WASTE Documentation
MyCheckColorMenu(&ts.tsColor);

WECopyRange

Makes a copy of the text, the styles and/or the embedded object data in the specified range.

pascal OSErr WECopyRange(long rangeStart, long rangeEnd, Handle hText,
StScrpHandle hStyles, WESoupHandle hSoup, WEHandle hWE);

Field descriptions
rangeStart Offset to the beginning of the range.
rangeEnd Offset to the end of the range.
hText Handle to a relocatable block where a copy of the text is returned.
hStyles Handle to a relocatable block where a copy of the styles is returned.
hSoup Handle to a relocatable block where a copy of the embedded object data is
returned.
hWE The WE instance.

DESCRIPTION
WECopyRange makes a copy of the text, the style information and/or the embedded object data in
the specified range. You pass valid handles in hText, hStyles and hSoup and these handles are
resized appropriately; you can also pass NULL in any parameter if you don’t want the corresponding
information returned. The style information is returned in the standard TextEdit style scrap format
(the same format used for the styl Clipboard data type). Be aware that while this format is very
simple to use, it is also very inefficient space-wise and it can take up a lot of memory.
Furthermore, if there are more than 32,767 style runs in the specified range, the scrpNStyles
field of the style scrap will contain invalid information. The hSoup parameter, if supplied, is filled
with information describing the objects embedded within the specified range (if any). This
information can be saved and later passed to WEInsert to restore the embedded objects in their
old places within the text stream. If there are no objects in the specified range, the hSoup handle
is set to a zero-size block.

RESULT CODES
noErr 0 No error
memFullErr -108 Out of memory

WECountLines

Returns the number of lines.

pascal long WECountLines(WEHandle hWE);

Field descriptions
hWE The WE instance.

DESCRIPTION
WECountLines returns the number of lines of text associated with the specified WE instance,
initially one. If the last character in the text is a carriage return (ASCII 13), the last line is not
taken into account by WECountLines.

WASTE Documentation 16

17 WASTE Documentation

WEGetHeight

Returns the cumulative pixel height of a given line range.

pascal long WEGetHeight(long startLine, long endLine, WEHandle hWE);

Field descriptions
startLine Index to the first line in the range.
endLine Index to the last line in the range.
hWE The WE instance.

DESCRIPTION
WEGetHeight returns the cumulative pixel height of the specified line range. The startLine and
endLine parameters specify positions between lines (just as byte offsets specify positions between
characters): 0 specifies the top of the destination rectangle, 1 specifies the position between the
first and the second line, etc. Alternatively, you can think of startLine and endLine as line indices
(the first line being line zero), but in this case keep in mind that WEGetHeight returns the pixel
height from startLine inclusive to endLine exclusive, while the TextEdit routine TEGetHeight
includes both lines in the computation. StartLine and endLine are pinned to the range 0..nLines
and reordered if necessary. If the last character in the text is a carriage return (ASCII 13), the
height of the last line is not taken into account by WEGetHeight. The data structures used by
WASTE make WEGetHeight a cheap call (much faster then TEGetHeight when endLine - startLine
is large).

WEGetPoint

Returns the screen position corresponding to a given text offset.

pascal void WEGetPoint(long offset, LongPt *thePoint, short *lineHeight,
WEHandle hWE);

Field descriptions
offset A byte offset into the text.
thePoint Pointer to a LongPt record where the corresponding screen position is returned.
lineHeight Pointer to a short integer where the corresponding line height is returned.
hWE The WE instance.

DESCRIPTION
WEGetPoint converts a text offset into a screen position, expressed in local coordinates. The
screen position corresponds to the top left corner of the rectangle enclosing the character glyph at
the specified offset; the height of this rectangle is returned in lineHeight.

WEGetOffset

Returns the offset/edge pair corresponding to a given screen position.

pascal long WEGetPoint(const LongPt *thePoint, char *edge, WEHandle hWE);
WASTE Documentation 17

18 WASTE Documentation

Field descriptions
thePoint A screen position, in local coordinates.

WASTE Documentation 18

19 WASTE Documentation

edge Pointer to a char where the edge value is returned.
hWE The WE instance.

DESCRIPTION
WEGetOffset converts a screen position into a byte offset into the text. The function result is the
offset to the nearest character glyph; the value returned in the edge parameter specifies whether
the given point falls on the leading (kLeadingEdge) or trailing (kTrailingEdge) edge of this glyph.
WASTE can also return the value kObjectEdge in this parameter, indicating that the given position
lies in the middle half of an embedded object, but this feature can be disabled by setting the
compiler switch WASTE_OBJECTS_ARE_GLYPHS to TRUE.

WECalText

Recalculates line breaks and other data structures used internally to keep track of line layout for
the whole text.

pascal OSErr WECalText(WEHandle hWE);

Field descriptions
hWE The WE instance.

DESCRIPTION
WECalText recalculates line breaks and other data structures related to line layout for the whole
text. You normally don’t need to call this function during normal editing operations since WASTE
performs all the necessary recalculations automatically. You do need to call WECalText, however, if
you called WEUseText to completely replace the text or if you called some editing routines with
automatic recalculation turned off (see WEFeatureFlag for details on how to disable automatic
recalculation). WECalText is an expensive call which can easily take several seconds to complete,
so use it sparingly.

RESULT CODES
noErr 0 No error
memFullErr -108 Out of memory

WEUpdate

Call WEUpdate in response to an update event in the view rectangle.

pascal void WEUpdate(RgnHandle updateRgn, WEHandle hWE);

Field descriptions
updateRgn Handle to the region to redraw, in local coordinates.
hWE The WE instance.

DESCRIPTION
WEUpdate draws the portion of text specified by updateRgn. You tipically call this function after
getting an update event in the view rectangle. Be sure to erase the update area to the background
color before calling WEUpdate, otherwise the text may not be redrawn correctly.

WASTE Documentation 19

20 WASTE Documentation

If you pass NULL in updateRgn, the whole view rectangle is erased and redrawn.

WASTE Documentation 20

21 WASTE Documentation

SPECIAL CONSIDERATIONS
If you use WEUpdate within a standard printing loop for imaging the text to a printer, be sure to
turn off offscreen drawing, otherwise the QuickDraw bottlenecks set up for printing will only
intercept _StdBits calls instead of _StdText calls, with possible ill effects on print quality.

WEActivate

Call WEActivate when the window that owns the WE instance receives an activate event.

pascal void WEActivate(WEHandle hWE);

Field descriptions
hWE The WE instance.

DESCRIPTION
WEActivate marks the specified WE instance as active and redraws the current selection range
accordingly. If a TSM document record is associated with the WE instance, WEActivate notifies
the Text Services Manager of the change. You should call WEActivate before calling WEClick or
WEKey; otherwise the selection range may not be drawn correctly.

WEDeactivate

Call WEDeactivate when the window that owns the WE instance receives a deactivate event.

pascal void WEDeactivate(WEHandle hWE);

Field descriptions
hWE The WE instance.

DESCRIPTION
WEDeactivate marks the specified WE instance as inactive and redraws the current selection
range accordingly. If a TSM document record is associated with the WE instance, WEDeactivate
notifies the Text Services Manager of the change.

WEIsActive

Call WEDeactivate to determine whether the specified WE instance is active or inactive.

pascal Boolean WEIsActive(WEHandle hWE);

Field descriptions
hWE The WE instance.

DESCRIPTION
WEIsActive returns true if the specified WE instance is active.

WASTE Documentation 21

22 WASTE Documentation

WEScroll

Call WEScroll to scroll the text within the view rectangle by a given amount of pixels.

pascal void WEScroll(long hOffset, long vOffset, WEHandle hWE);

Field descriptions
hOffset Amount to scroll horizontally, in pixels.
vOffset Amount to scroll vertically, in pixels.
hWE The WE instance.

DESCRIPTION
WEScroll offsets the destination rectangle by the specified amount of pixels, horizontally and/or
vertically, and it updates the text in the view rectangle to reflect the change. Positive values of
hOffset move the text to the right. Positive values of vOffset move the text down.
WEScroll may be called internally by other WASTE routines if you enabled the auto scrolling
feature: when this happens, the scroll callback routine (see the description of the WESetInfo
routine), if present, is invoked. The scroll callback is not invoked, however, when you call
WEScroll directly.

WESelView

Call WESelView to ensure that the current selection range is visible.

pascal void WESelView(WEHandle hWE);

Field descriptions
hWE The WE instance.

DESCRIPTION
WESelView checks to see if the current selection range (specifically, the free endpoint of the
selection range) is within the view rectangle. If it isn’t, WESelView scrolls the text to show the
selection range, trying to center it in the middle of the view rectangle.
If automatic scrolling is disabled (see the description of the WEFeatureFlag routine), WESelView
has no effect.

WEStopInlineSession

WEStopInlineSession stops the ongoing inline input session (if any) and causes all unconfirmed
text in the active input area to be confirmed.

pascal void WEStopInlineSession(WEHandle hWE);

Field descriptions
hWE The WE instance.

DESCRIPTION

WASTE Documentation 22

23 WASTE Documentation

WEStopInlineSession terminates the ongoing input session (if any) by calling the TSM function
FixTSMDocument, which in turn calls a component function in the current input method, which
finally results in an Apple event being sent to the specified WE instance to close the active input
area. If the Text Services Manager isn’t available, nothing happens.

WEKey

Call WEKey when you receive a keyDown or autoKey event directed to the window that owns a given
WE instance.

pascal void WEKey(short key, short modifiers, WEHandle hWE);

Field descriptions
key The character code.
modifiers The modifiers field of the event record.
hWE The WE instance.

DESCRIPTION
WEKey inserts the specified character at the insertion point. If the current selection is not empty, it
is replaced by the new character.
If key is the backspace character, WEKey deletes the character preceding the insertion point or, if
the selection range is not empty, it deletes the current selection. Similarly, if key is the forward
delete character (ASCII 0x7F), WEKey deletes the character following the insertion point or, if the
selection range is not empty, it deletes the current selection. Don’t forget that these keys delete
characters, not bytes.
If key is an arrow key, WEKey moves the insertion point accordingly or, if the selection range is not
empty, it collapses the current selection to one of its endpoints. The modifiers parameter is taken
into account when handling arrow keys: option+left/right arrow moves the insertion point to the
nearest word boundary in the respective direction, command+left/right arrow moves the insertion
point to the beginning/end of the line, option+up/down arrow moves the insertion point to the
beginning/end of the text and the shift key can be used in combination with any of the above
modifiers to extend or shrink the selection.
If a double-byte script system is installed and key is the first half of a double-byte character, key is
not immediately inserted into the text, but rather it is cached internally. When the second byte
arrives, the whole character is inserted.
If undo support is enabled, changes made by a series of WEKey calls (called a typing sequence)
are recorded internally so that they can be later undone. A typing sequence can include any
number of backspace and forward delete characters and is interrupted only when the insertion
point is moved to a different location or when another undoable WASTE routine is called. You can
call WEIsTyping to find out whether a WEKey call would be part of an ongoing typing sequence or
would cause a new one to be started.

WEClick

Call WEClick in response to a mouse-down event in the view rectangle.

pascal void WEClick(Point hitPt, short modifiers, long clickTime,
WEHandle hWE);

Field descriptions

WASTE Documentation 23

24 WASTE Documentation

hitPt The hit point in local coordinates.
modifiers The modifiers field of the event record.
clickTime The when field of the event record.

WASTE Documentation 24

25 WASTE Documentation

hWE The WE instance to activate.

DESCRIPTION
WEClick handles key-down events directed to the view rectangle of the WE instance, retaining
control until the mouse button is released. The current selection range is continuously modified as
the mouse moves and the highlighting is redrawn accordingly.
If the shift key wasn’t held down, the hit point becomes the new anchor point of the selection
range while the position where the mouse button is released becomes the new free endpoint. If
the shift key was held down, the anchor point is not changed, but the free endpoint can be moved.
A double-click selects a word, and dragging the mouse or shift-clicking afterwards extends or
shrinks the selection word by word. Triple-clicks do the same, but this time line by line.
If the Drag Manager is available, clicking in the selection range and dragging starts a new drag,
consisting of a single drag item. Ordinarily, this drag item has three flavors, namely TEXT, styl
and SOUP (the latter is empty most of the times). If the selection range consists of a single
embedded object, however, WASTE uses its type tag as the flavor type for the drag item, so that,
for example, dragging a single picture to the desktop creates a picture clipping. If WEClick
detects that the drop location for the drag is the trash, it deletes the original selection range (this
operation is undoable, however).
You can install a callback routine which is called repeatedly while the mouse is being tracked by
WEClick: call WESetInfo with selector set to weClickLoop and *info set to the address of your
callback routine (use a UPP if you’re using a PowerPC native version of WASTE). This routine is
meant to be used to implement text auto-scrolling when the mouse is outside the view rectangle.
This callback may be invoked by WETrackDrag as well (see below).
Your callback should be a function of type WEClickLoopProcPtr, declared as follows:

pascal Boolean MyClickLoop(WEHandle hWE);

The hWE parameter contains the WE instance where mouse tracking is taking place. Your callback
routines should normally return true. Returning false causes mouse tracking to be immediately
stopped and WEClick to return to its caller.
You should never call WEClick when the WE instance is inactive.

WETrackDrag

Call WETrackDrag from your application drag tracking handler to provide drag feedback for the
specified WE instance.

pascal OSErr WETrackDrag(DragTrackingMessage message, DragReference drag,
 WEHandle hWE);

Field descriptions
message Selector used to distinguish the phases of a drag: should be

dragTrackingEnterWindow, dragTrackingInWindow or
dragTrackingLeaveWindow.

drag The drag reference.
hWE The WE instance.

DESCRIPTION

WASTE Documentation 25

26 WASTE Documentation

WETrackDrag determines whether the specified drag can be accepted and provides the necessary
drag feedback, blinking the caret at the offset where the drag would be inserted, highlighting the
view rectangle appropriately and removing the feedback when the drag leaves the view rectangle.
When WETrackDrag detects that the drag has remained outside the view rectangle for more than
10 ticks, it calls the click loop routine (see WEClick) so that auto-scrolling can be implemented.

RESULT CODES
noErr 0 No error
badDragRefErr -1850 Invalid drag reference

WEReceiveDrag

Call WETrackDrag from your application drag receive handler to insert the contents of a drag into
the specified WE instance.

pascal OSErr WEReceiveDrag(DragReference drag, WEHandle hWE);

Field descriptions
drag The drag reference.
hWE The WE instance.

DESCRIPTION
WEReceiveDrag calculates the text offset corresponding to the drop location, extracts the relevant
data from the drag and inserts it into the WE instance. If the drag originates from the same WE
instance, the selection range is moved, rather than copied, to the new destination. A copy can be
forced by holding down the option key either at the beginning or at the end of the drag. Intelligent
cut-and-paste rules are applied if the corresponding feature has been enabled. The effects of
WEReceiveDrag can be undone, if undo support is enabled.
For each item in the drag, WEReceiveDrag first tries to extract a TEXT flavor; if TEXT is available, it
looks for the (optional) accompanying styl and SOUP information. If no TEXT is available,
WEReceiveDrag tries to extract flavor types matching the registered object types, like WEPaste does
for scrap types. For example, if you have installed a ‘new ’ handler for ‘snd ’ objects,
WEReceiveDrag tries to extract a sound from the drag item; if one is found, your ‘new ’ handler is
called to initialize a new sound object which is then inserted in the text.

RESULT CODES
noErr 0 No error
memFullErr -108 Out of memory
badDragRefErr -1850 Invalid drag reference
badDragFlavorErr -1852 At least one drag item contains no acceptable flavor
dragNotAccepterErr -1857 Invalid drop location
weReadOnlyErr -9476 The specified WE instance is read-only

WEIdle

Call WEIdle when your application receives a null event to ensure a regular blinking of the caret.

pascal void WEIdle(long *maxSleep, WEHandle hWE);

Field descriptions
WASTE Documentation 26

27 WASTE Documentation

maxSleep Pointer to a long variable set to the maximum time (in ticks) that should be
allowed to elapse before the next call to WEIdle.

WASTE Documentation 27

28 WASTE Documentation

hWE The WE instance.

DESCRIPTION
WEIdle inverts the caret if the WE instance is active, the selection range is empty and if at least
CaretTime (a system global variable) ticks have elapsed since the last time the caret was inverted.
MaxSleep is set to the amount of time remaining before the caret must be inverted again to ensure
a regular blinking. Pass NULL in this parameter if you don’t want this value returned.

WEAdjustCursor

Call WEAdjustCursor periodically to give WASTE a chance to set the cursor when the mouse is
within the view rectangle.

pascal Boolean WEAdjustCursor(Point mouseLoc, RgnHandle mouseRgn,
WEHandle hWE);

Field descriptions
mouseLoc The mouse location, in global coordinates.
mouseRgn Handle to a region within which the cursor is to retain its shape.
hWE The WE instance.

DESCRIPTION
WEAdjustCursor checks to see if the given mouse location is within the view rectangle of the
specified WE instance. If yes, it sets the cursor to an I-beam (or to an arrow, if the Drag Manager
is available and the mouse location is within the selection range) and returns TRUE; otherwise
WEAdjustCursor does not set the cursor and it returns FALSE. The mouseRgn parameter can be
either NULL or a valid region handle. In the latter case, rgnHandle is intersected with a region
within which the cursor is to retain its current shape.

WEGetSelection

Returns the endpoint offsets of the current selection.

pascal void WEGetSelection(long *selStart, long *selEnd, WEHandle hWE);

Field descriptions
selStart Pointer to a long variable set to the start of the selection range.
selEnd Pointer to a long variable set to the end of the selection range.
hWE The WE instance.

DESCRIPTION
WEGetSelection returns the offsets to the start and the end of the current selection range.
SelStart is always set to a value less than or equal to selEnd, regardless of which one is the
anchor point.

WESetSelection

Use WESetSelection to set the selection range.
WASTE Documentation 28

29 WASTE Documentation

pascal void WESetSelection(long selStart, long selEnd, WEHandle hWE);

Field descriptions
selStart The byte offset to the anchor point.
selEnd The byte offset to the free endpoint.
hWE The WE instance.

DESCRIPTION
WESetSelection sets the selection range and redraws the highlighting appropriately. SelStart
and selEnd are pinned to the range 0..textLength and reordered if necessary, but selStart
always becomes the new anchor point. If auto scrolling is enabled, the text may be scrolled to
make the free endpoint visible. WESetSelection works correctly even if the WE instance is
inactive and outline highlighting is enabled, but when the WE instance is active, WESetSelection
is optimized to highlight only the difference between the old and the new selection range.

EXAMPLES
/* selects the whole text */

WESetSelection(0, 0x7FFFFFFF, hWE);

/* displays the caret at the beginning of the text */
WESetSelection(0, 0, hWE);

/* selects the range 5 to 10; 10 becomes the new anchor point */
WESetSelection(10, 5, hWE);

WEInsert

Inserts the specified text at the insertion point.

pascal OSErr WEInsert(Ptr textPtr, long textLength, StScrpHandle hStyles,
WESoupHandle hSoup, WEHandle hWE);

Field descriptions
textPtr Pointer to a text buffer.
textLength Size of the text buffer.
hStyles Handle to a style scrap (optional).
hSoup Handle to a soup (optional).
hWE The WE instance.

DESCRIPTION
WEInsert inserts the specified text at the insertion point (if the current selection range is not
empty, it is replaced by the inserted text). You can optionally specify style information and
embedded object information (“soup”) accompanying the text by passing a standard TextEdit style
scrap in hStyles and/or a WESoupHandle in hSoup. WEInsert calls are undoable and are affected
by intelligent cut-and-paste rules if the corresponding features are enabled.

RESULT CODES
noErr 0 No error

WASTE Documentation 29

30 WASTE Documentation

memFullErr -108 Out of memory
weReadOnlyErr -9476 The specified WE instance is read-only

WEDelete

Deletes the selection range.

pascal OSErr WEDelete(WEHandle hWE);

Field descriptions
hWE The WE instance.

DESCRIPTION
WEDelete removes the text in the current selection range. WEDelete calls are undoable and are
affected by intelligent cut-and-paste rules if the corresponding features are enabled.

RESULT CODES
noErr 0 No error
memFullErr -108 Out of memory
weReadOnlyErr -9476 The specified WE instance is read-only

WESetStyle

Use WESetStyle to modify the style attributes associated with the current selection range.

pascal OSErr WESetStyle(short mode, TextStyle *ts, WEHandle hWE);

Field descriptions
mode Set of bits determining which attributes are to be changed and how.
ts Pointer to a TextStyle record.
hWE The WE instance.

DESCRIPTION
WESetStyle applies the specified style attributes to the current selection range. The mode
parameter is a interpreted as a set of bits specifying which attributes are to be changed and how.
If weDoAddSize is specified, the tsSize field of the ts record is added to the font sizes in the
selection range, rather than replacing them; the sum is pinned to the positive integer range.
The rules for applying QuickDraw styles (the tsFace field of the ts record) are rather complex:
tsFace replaces the target styles outright if it is zero (i.e., the empty set) or if weDoReplaceFace is
specified in mode. Otherwise tsFace is interpreted as a selector indicating which styles are to be
altered — all other styles are left intact. What exactly happens to the styles indicated in tsFace
depends on whether weDoToggleFace is specified in mode or not. If weDoToggleFace is specified, a
style is turned off if it’s continuous over the selection range, else it is turned on. If
weDoToggleFace is not specified, the indicated styles are always turned on. WESetStyle calls are
undoable.

RESULT CODES
noErr 0 No error
memFullErr -108 Out of memory

WASTE Documentation 30

31 WASTE Documentation

weReadOnlyErr -9476 The specified WE instance is read-only

WEUseText

Replaces the text in the specified WE instance with a given text handle.

pascal OSErr WEUseText(Handle hText, WEHandle hWE);

Field descriptions
hText Handle to the text.
hWE The WE instance.

DESCRIPTION
WEUseText replaces the text handle in the specified WE instance with the given handle. The
original handle is released. You should call WEUseText soon after creating a WE instance with
WENew, possibly to restore text from a previously saved file. WEUseText does not automatically
recalculate line breaks or redraw the text: you must call WECalText explicitly. This call is not
undoable.

RESULT CODES
noErr 0 No error

WEUseStyleScrap

Applies the specified style information to the current selection range.

pascal OSErr WEUseStyleScrap(StScrpHandle hStyles, WEHandle hWE);

Field descriptions
hStyles Handle to a style scrap.
hWE The WE instance.

DESCRIPTION
WEUseStyleScrap applies the specified style scrap to the selection range. This call is not undoable.

RESULT CODES
noErr 0 No error
memFullErr -108 Out of memory

WECopy

Copies the selection range to the Clipboard.

pascal OSErr WECopy(WEHandle hWE);

Field descriptions
hWE The WE instance.

WASTE Documentation 31

32 WASTE Documentation

DESCRIPTION
WECopy copies the selection range to the desk scrap. Ordinarily, three scrap types are put into the
scrap, i.e. the standard TEXT/styl pair plus a possibly empty SOUP used to save embedded object
information. If the selection range consists of a single embedded object, however, its type tag is
used as scrap type and its associated data is put into the scrap. For a variety of reasons, you
should exercise care when calling this function for more than 32K of text. This call is not
undoable.

RESULT CODES
noErr 0 No error
memFullErr -108 Out of memory
weEmptySelectionErr -10013 The selection range is empty

WECut

Copies the selection range to the Clipboard and removes it from the text.

pascal OSErr WECut(WEHandle hWE);

Field descriptions
hWE The WE instance.

DESCRIPTION
WECut combines the functions of WECopy and WEDelete. It is undoable, but the previous contents of
the desk scrap are not saved. If the given WE instance is read-only, WECut copies the selection
range to the Clipboard but does not delete it and returns an error code.

RESULT CODES
noErr 0 No error
memFullErr -108 Out of memory
weReadOnlyErr -9476 The specified WE instance is read-only
weEmptySelectionErr -10013 The selection range is empty

WEPaste

Pastes the contents of the Clipboard at the insertion point.

pascal OSErr WEPaste(WEHandle hWE);

Field descriptions
hWE The WE instance.

DESCRIPTION
WEPaste first looks in the desk scrap for a pasteable item: if one is found, it is inserted into the text
at the insertion point (if the selection range is not empty, it is replaced by the pasted item).
WEPaste first looks for a TEXT item; if one is found, WEPaste looks for the (optional) accompanying
styl and SOUP information. If no TEXT is found, WEPaste tries to get a scrap type matching one of
the registered object types, like WEReceiveDrag does for flavor types.

WASTE Documentation 32

33 WASTE Documentation

RESULT CODES
noErr 0 No error
noTypeErr -102 No pasteable items in the desk scrap
memFullErr -108 Out of memory
weReadOnlyErr -9476 The specified WE instance is read-only

WECanPaste

Determine whether the current contents of the Clipboard can be pasted into the specified WE
instance.

pascal Boolean WECanPaste(WEHandle hWE);

Field descriptions
hWE The WE instance.

DESCRIPTION
WECanPaste checks the contents of the desk scrap looking for pasteable items: if one is found, it
returns TRUE.

WEUndo

Undoes the most recent undoable operation.

pascal OSErr WEUndo(WEHandle hWE);

Field descriptions
hWE The WE instance.

DESCRIPTION
WEUndo reverses the effects of the most recent undoable operation, if any. Use WEGetUndoInfo to
find out what kind of action can be undone by calling WEUndo. WEUndo is itself an undoable
operation and the only one which decrements, rather than increment, the modification count (the
modification count is incremented, however, when you undo an undo).

RESULT CODES
noErr 0 No error
memFullErr -108 Out of memory
weReadOnlyErr -9476 The specified WE instance is read-only
weCantUndoErr -10015 The undo buffer is empty

WEClearUndo

Clears the undo buffer associated with the specified WE instance.

pascal void WEClearUndo(WEHandle hWE);

WASTE Documentation 33

34 WASTE Documentation

Field descriptions

WASTE Documentation 34

35 WASTE Documentation

hWE The WE instance.

DESCRIPTION
WEClearUndo destroys the contents of the undo buffer associated with the specified WE instance.

WEGetUndoInfo

Returns a description of the most recent undoable operation.

enum {
weAKNone = 0, /* null action */
weAKUnspecified = 1, /* action of unspecified nature */
weAKTyping = 2, /* some text has been typed in */
weAKCut = 3, /* the selection range has been cut */
weAKPaste = 4, /* something has been pasted */
weAKClear = 5, /* the selection range has been deleted */
weAKDrag = 6, /* drag and drop operation */
weAKSetStyle = 7 /* some style has been applied */

};

pascal WEActionKind WEGetUndoInfo(Boolean *redoFlag, WEHandle hWE);

Field descriptions
redoFlag Pointer to a Boolean variable set to TRUE if calling WEUndo would cause a “redo”.
hWE The WE instance.

DESCRIPTION
WEGetUndoInfo returns a code describing the kind of operation that would be undone by calling
WEUndo. For example, after calling WECut, WEGetUndoInfo would return weAKCut. If the undo
buffer is empty, WEGetUndoInfo returns weAKNone. Unlike the other undoable operations, WEUndo
does not change the current action kind, but rather negates the current setting of the redoFlag.

WEIsTyping

Determines whether a typing sequence is in progress.

pascal Boolean WEIsTyping(WEHandle hWE);

Field descriptions
hWE The WE instance.

DESCRIPTION
WEIsTyping returns TRUE if the specified WE instance is currently tracking a typing sequence, i.e.
if the next character will add to, rather than replace, the contents of the undo buffer. WEIsTyping
returns FALSE if Undo has not been enabled.

WEGetModCount

Returns the modification count for the specified WE instance.
WASTE Documentation 35

36 WASTE Documentation

pascal long WEGetModCount(WEHandle hWE);

Field descriptions
hWE The WE instance.

DESCRIPTION
WEGetModCount returns the modification count for the specified WE instance. This is an internal
count initialized to zero by WENew and incremented by one by undoable WASTE calls. This call can
be handy to determine whether a given WE instance is “dirty” (i.e. whether is has been modified
since the last time it was saved). The modification count is actually decremented by one by WEUndo
(unless it’s undoing an undo) so that undoing a single action that has dirtied an otherwise clean
instance makes the instance clean again.

WEResetModCount

Resets the modification count for the specified WE instance and clears the undo buffer.

pascal void WEResetModCount(WEHandle hWE);

Field descriptions
hWE The WE instance.

DESCRIPTION
WEResetModCount sets the modification count for the specified WE instance to zero and clears the
undo buffer. If you use a WE instance’s built-in modification count to keep track of a document’s
“dirty” state, you may want to call WEResetModCount every time the on-disk version of the
document gets synchronized with the in-memory version, i.e. after a save or a revert command.

WEInstallObjectHandler

Installs a routine to handle the specified operation (e.g. drawing) for a given type of objects.

/* values for the selector parameter */

enum {
weNewHandler = 'new ', /* new handler */
weDisposeHandler = 'free', /* dispose handler */
weDrawHandler = 'draw', /* draw handler */
weClickHandler = 'clik' /* click handler */

};

pascal OSErr WEInstallObjectHandler(OSType objectType, OSType selector,
UniversalProcPtr handler, WEHandle hWE);

Field descriptions
objectType Specifies the object type to which the handler applies.
selector Specifies the handler type.
handler The address of the handler routine.
hWE The WE instance for which the handler is registered, or NULL for global handlers.

WASTE Documentation 36

37 WASTE Documentation

DESCRIPTION
Use WEInstallObjectHandler to register “object handlers” with WASTE. Currently, WASTE
defines handlers for four different purposes:

weNewHandler Creating a new object from raw data coming from the desk scrap or from a drag.
weDisposeHandler Disposing of objects.
weDrawHandler Drawing objects.
weClickHandler Responding to mouse-down events in active objects.

A description of these handlers is given in the section about application-supplied routines.
If you pass NULL in hWE, the handler will be registered in a global handler table that can be
accessed by all WE instances throughout your application, whereas if you pass a valid WE instance
in hWE, the handler will be registered in an instance-specific handler table.

RESULT CODES
noErr 0 No error
weUndefinedSelectorErr -50 Invalid selector
memFullErr -108 Out of memory

WEInsertObject

Embeds an object at the insertion point.

pascal OSErr WEInsertObject(OSType objectType, Handle objectDataHandle,
Point objectSize, WEHandle hWE);

Field descriptions
objectType Qualifies the data type passed in objectDataHandle.
objectDataHandle The actual data for the object.
objectSize Desired height and width for the rectangle enclosing the object (optional).
hWE The WE instance.

DESCRIPTION
Use WEInsertObject to embed an “object” at the current insertion point (if the selection is not
empty, it will be replaced by the inserted object). By the time you call WEInsertObject, you should
have registered handlers to initialize, dispose and draw objects of the specified type.
WEInsertObject will call the appropriate handlers to set up any additional data structures, to
figure out the height and width of the rectangle enclosing the object and to draw the object.
WEInsertObject looks for handlers for the specified object type, first in the instance-specific
handler table, then in the global handler table (see the description of WEInstallObjectHandler).
WEInsertObject will return successfully even if no handlers are found for the specified object type.
You normally pass {0,0} in the objectSize parameter, indicating that you want to use the default
size for the object as calculated by the new handler. A nonzero value overrides the default size.
Here’s a brief explanation of the internals of embedded object implementation. The inserted
object is represented within the text stream by a single control character (ASCII 0x01, to be
precise, but this is an implementation detail you should not depend on). This control character
lives in a style run of its own, marked internally by WASTE as an embedded object. An internal
data structure is created to track the attributes of the object: its type, size, data handle, owner
instance and “reference constant”. Your application can access these attributes by using accessor

WASTE Documentation 37

38 WASTE Documentation

functions.

WASTE Documentation 38

39 WASTE Documentation

RESULT CODES
noErr 0 No error
memFullErr -108 Out of memory

WEGetSelectedObject

Use this call to find out whether an object is currently selected and to get a reference to it.

pascal OSErr WEGetSelectedObject(WEObjectReference *objectRef, WEHandle hWE);

Field descriptions
objectRef Set to a reference to the selected object, or NULL if none is found.
hWE The WE instance.

DESCRIPTION
If the selection range consists of exactly one embedded object, WEGetSelectedObject returns a
reference to it in objectRef, otherwise a weObjectNotFoundErr result code is returned and
objectRef is set to NULL.

RESULT CODES
noErr 0 No error
weObjectNotFoundErr -9477 Object not found

WEFindNextObject

Call this routine repeatedly to find all embedded objects in a given WE instance .

pascal long WEFindNextObject(long offset, WEObjectReference *objectRef,
WEHandle hWE);

Field descriptions
offset The search starts at (offset + 1).
objectRef Set to a reference to the next object, or NULL if none is found.
hWE The WE instance.

DESCRIPTION
WEFindNextObject looks for the first embedded object following offset: if one is found, a
reference to it is returned in objectRef and the byte offset to the object in the text stream is
returned as function result. If there is no object following the specified offset, WEFindNextObject
returns -1 as function result and sets objectRef to NULL.

EXAMPLE
WEObjectReference objectRef = NULL;
long offset = -1;

do {
offset = WEFindNextObject(offset, &objectRef, hWE);

WASTE Documentation 39

40 WASTE Documentation
if (objectRef != NULL)

WASTE Documentation 40

41 WASTE Documentation
{

// do something with the object
}

} while (offset >= 0);

WEGetObjectType / WEGetObjectDataHandle / WEGetObjectSize / WEGetObjectOwner / WEGetObjectRefCon /
WESetObjectRefCon

These calls let you access attributes of embedded objects.

pascal OSType WEGetObjectType(WEObjectReference objectRef);
pascal Handle WEGetObjectDataHandle(WEObjectReference objectRef);
pascal Point WEGetObjectSize(WEObjectReference objectRef);
pascal WEHandle WEGetObjectOwner(WEObjectReference objectRef);
pascal long WEGetObjectRefCon(WEObjectReference objectRef);
pascal void WESetObjectRefCon(WEObjectReference objectRef, long refCon);

Field descriptions
objectRef The object reference.
refCon A “reference constant” for use by your application.

DESCRIPTION
You typically use these accessor functions from within your object handlers.

WEFeatureFlag

Use WEFeatureFlag to enable, disable and test miscellaneous features of a WE instance.

/* values for the action parameter */

enum {
weBitToggle = -2, /* toggles the specified feature */
weBitTest = -1, /* returns the current setting */
weBitClear = 0, /* disables the specified feature */
weBitSet = 1 /* enables the specified feature */

};

/* values for feature parameter */

enum {
weFAutoScroll = 0, /* automatic scrolling */
weFOutlineHilite = 2, /* outline highlighting */
weFReadOnly = 5, /* disallows changes */
weFUndo = 6, /* undo support */
weFIntCutAndPaste = 7, /* intelligent cut and paste */
weFDragAndDrop = 8, /* drag and drop support */
weFInhibitRecal = 9, /* inhibits line break recalculation */
weFDrawOffscreen = 11 /* offscreen drawing */

};

pascal short WEFeatureFlag(short feature, short action, WEHandle hWE);

WASTE Documentation 41

42 WASTE Documentation

Field descriptions

WASTE Documentation 42

43 WASTE Documentation

feature Identifies the feature being set or tested.
action Identifies the action being performed.
hWE The WE instance.

DESCRIPTION
Specify weBitToggle, weBitSet, weBitClear or weBitTest to toggle, set, clear or just test the
setting of the specified feature. In all four cases, the old setting is returned. A number of features
can be controlled, including automatic scrolling, outline highlighting, drag and drop editing, undo
support, intelligent cut and paste and offscreen drawing. WEFeatureFlag can also be used to
temporarily disable automatic recalculation of line breaks during editing operations and to
disallow changes to the text. All features are initially set according to the flags parameter passed
to WENew.

AUTOMATIC SCROLLING
When automatic scrolling is enabled, the destination rectangle is automatically scrolled to keep a
particular text position centered in the middle of the view rectangle. This position is normally the
insertion point or, if the selection range is not empty, the free endpoint of the range, but an input
method may instruct WASTE to scroll a different range into view using an appropriate Apple event.
You can set up a callback routine if you want to be notified of implicit calls to WEScroll (see the
description of the WESetInfo routine). If this feature is disabled, only an explicit call to WEScroll
can scroll the text.

OUTLINE HIGHLIGHTING
When outline highlighting is enabled, the selection range is framed with the highlight color while
the WE instance is inactive. When outline highlighting is disabled, no highlighting is applied to the
text while the WE instance is inactive. Contrary to the behavior of TextEdit, the caret is never
drawn while the WE instance is inactive.

READ-ONLY
This feature flag disallows modifications to the text: when it’s set, a number of WASTE routines do
nothing and return the error code weReadOnlyErr. Although it may seem that simply avoiding
text-modifying calls is enough to prevent changes to the text, there are a number of subtle cases
difficult to catch (e.g. when WASTE receives an appropriate Apple event from an inline input
component or when the user drags the selection range to the trash), hence the need for this flag.

UNDO SUPPORT
Set the weFUndo feature flag if you want to be able to call the WEUndo routine: when this feature is
enabled, WASTE maintains an internal undo buffer holding the information needed to reverse the
effect of the following calls: WEKey, WEInsert, WEInsertObject, WEDelete, WESetStyle, WECut,
WEPaste, WEReceiveDrag and WEUndo itself.
Clearing this flag does not automatically dispose of the undo buffer (you must call WEClearUndo for
this), so you can call any of the above routines without affecting it.

INTELLIGENT CUT AND PASTE
When this flag is set, WASTE uses “intelligent cut and paste” rules to remove and/or add extra
blank characters according to the context when you call WEInsert, WEDelete, WECut, WEPaste and
WEReceiveDrag. For example, when this flag is set, you can change the following text:

Returns are only accepted if the merchandise is damaged.

WASTE Documentation 43

44 WASTE Documentation

to this:

WASTE Documentation 44

45 WASTE Documentation

Returns are accepted only if the merchandise is damaged.

by double-clicking the word “only” (thus selecting four characters and no spaces) and dragging it
after the word “accepted” or before the word “if”. Without intelligent cut and paste, the result
would look like this:

Returns are acceptedonly if the merchandise is damaged.

which would make drag and drop editing less useful.
NOTE: currently, the only character which may be added or removed by WASTE is the Roman
space character (ASCII 32): WASTE will do nothing with blank characters found in non-Roman
script systems, like the “zenkaku” (double-byte) space found in the Japanese script.

DRAG AND DROP SUPPORT
WEClick and WEAdjustCursor change their behavior to support drag and drop if the Drag Manager
is available and if your application sets the weFDragAndDrop feature flag: WEClick will let clicks in
the selection start a drag and WEAdjustCursor will change the cursor shape to an arrow when the
mouse is over the selection. Please don’t forget that in order for drag and drop editing to work
correctly, your application has to install drag tracking and receive handlers: WASTE won’t do this
for you.

OFFSCREEN DRAWING
When offscreen drawing is enabled, text is first drawn to an offscreen buffer and then copied to the
screen when an editing operation requires one or more lines to be redrawn. Since the text is
always drawn in srcOr mode (to allow for character glyphs superimposing one another), portions
of the view rectangle would need to be erased before redrawing, possibly resulting in a flicker
effect. Offscreen drawing avoids this need and ensures smooth visual results. Offscreen drawing
is not used when WEUpdate is called with a non-NULL updateRgn parameter (since the area to
redraw is assumed to have already been erased anyway) or when not enough memory is available
for the offscreen buffer. The offscreen buffer is allocated dynamically (possibly from temporary
memory) and is always made purgeable or altogether disposed of before control is returned to the
application.

INHIBITING LINE BREAK RECALCULATION
When the weFInhibitRecal bit is set, line breaks are not recalculated and text is not redrawn
during editing operations. In certain situations, for example when you have to apply a long
sequence of editing operations to a WE instance, you can achieve a significant performance boost
by inhibiting line break recalculation before starting the sequence and doing a complete
recalculation (with WECalText) when you are finished.

WEGetInfo / WESetInfo

Retrieve and set miscellaneous information associated with a specified WE instance.

pascal OSErr WEGetInfo(OSType selector, void *info, WEHandle hWE);
pascal OSErr WESetInfo(OSType selector, const void *info, WEHandle hWE);

Field descriptions

WASTE Documentation 45

46 WASTE Documentation

selector Four-letter tag identifying the information being requested.
info Pointer to storage where the requested information is to be copied to or from.

WASTE Documentation 46

47 WASTE Documentation

hWE The WE instance.

DESCRIPTION
WEGetInfo and WESetInfo provide an extensible mechanism to retrieve and set internal fields of a
WE instance without knowledge of where these fields are actually stored. The currently defined
fields are all 32-bit wide, but nothing prevents the addition of fields of different sizes in a future
release.
Here is a list of the selectors currently defined.

weClickLoop 'clik' Address of the click loop callback routine.
weCurrentDrag 'drag' Drag currently being tracked by WEClick, or zero if none.
wePort 'port' Pointer to the associated graphics port.
weRefCon 'refc' Reference constant for use by the client application.
weScrollProc 'scrl' Address of scroll callback routine.
weText 'text' Handle to the text.
weTSMDocument 'tsmd' Associated TSM document ID.
weTSMPreUpdate 'pre ' Address of the TSM pre-update callback routine.
weTSMPostUpdate 'post' Address of the TSM post-update callback routine.

The fields specified by the callback selectors (weClickLoop, weScrollProc, weTSMPreUpdate, etc.)
can be set to NULL (as they are initially) to indicate that no callback should be used. If you’re using
a PowerPC native version of the WASTE library, don’t forget to use UPPs to reference your callback
routines.
The following sections provide a short description of the available callbacks.

EXAMPLES
/* install a click loop callback routine */

static WEClickLoopUPP sClickLoopUPP = NULL;
OSErr err;

if (!sClickLoopUPP)
sClickLoopUPP = NewWEClickLoopProc(MyWEClickLoop);

err = WESetInfo(weClickLoop, (const void *) &sClickLoopUPP, hWE);

RESULT CODES
noErr 0 No error
weUndefinedSelectorErr -50 Invalid selector

MyWEClickLoop

Your application supplies this routine to perform additional actions during a call to WEClick or
WETrackDrag.

pascal Boolean MyWEClickLoop(WEHandle hWE);

Field descriptions
hWE The WE instance where mouse tracking is taking place.

WASTE Documentation 47

48 WASTE Documentation

DESCRIPTION
The click loop callback is very similar to its TextEdit counterpart and is typically used to provide
auto-scrolling behavior during calls to WEClick or to WETrackDrag.
From within your click loop routine, you typically want to sample the cursor position (using
GetMouse) and take additional actions if it is outside the view rectangle. Notice that while WEClick
keeps calling your click loop routine, WETrackDrag only calls it when the mouse has been outside
the view rectangle for at least 10 ticks. Here’s how you could determine whether your click loop is
being called by WETrackDrag:

DragReference currentDrag = 0L;
Boolean fromTrackDrag =
(WEGetInfo(weCurrentDrag, (void *) ¤tDrag, hWE) == noErr)
&& (currentDrag != 0L);

MyWEScroll

WASTE calls this application-supplied routine when the destination rectangle is changed.

pascal void MyWEScroll(WEHandle hWE);

Field descriptions
hWE The WE instance being auto-scrolled.

DESCRIPTION
When the auto-scrolling feature is enabled (see WEFeatureFlag), WEScroll may be called internally
in order to keep the selection range visible. If you want your application to be notified when this
happens (e.g. in order to keep the scroll bars in sync with the text), you can install a scroll
callback. Notice that if you call WEScroll directly, your callback will not be invoked.
The scroll callback will also be called when an editing action changes the text height, and
therefore the destination rectangle: destRect.bottom will be updated so that (destRect.bottom -
destRect.top) equals the pixel height of the whole text, including any blank lines at the bottom.

MyWETSMPreUpdate

WASTE calls this application-supplied routine immediately before handling an Update Active Input
Area Apple event sent by a text service component.

pascal void MyWETSMPreUpdate(WEHandle hWE);

Field descriptions
hWE The WE instance where inline input is taking place.

DESCRIPTION

WASTE Documentation 48

49 WASTE Documentation

This callback was provided in WASTE 1.0 mainly for compatibility with existing TextEdit-based
applications relying on the TSMTE extension to provide inline input support. Please refer to the
technical note TE 27, Inline Input for TextEdit with TSMTE, for information about the TSMTE
extension. A typical use of this callback in WASTE 1.0 (and in TextEdit) is to save information
needed to implement the Undo functionality. This use is no longer necessary in WASTE 1.1 if you
use the built-in Undo routines, designed to work seamlessly with inline input.

MyWETSMPostUpdate

WASTE calls this application-supplied routine immediately after handling an Update Active Input
Area Apple event sent by a text service component.

pascal void MyWETSMPostUpdate(WEHandle hWE,
long fixLength, long inputAreaStart, long inputAreaEnd,
long pinRangeStart, long pinRangeEnd);

Field descriptions
hWE The WE instance where inline input is taking place.
fixLength The length of the confirmed text in the active input area.
inputAreaStart Offset to the beginning of the active input area.
inputAreaEnd Offset to the end of the active input area.
pinRangeStart Offset to the beginning of the range to scroll into view.
pinRangeEnd Offset to the end of the range to scroll into view.

DESCRIPTION
Like the TSM pre-update routine (see above), this callback is provided mainly for compatibility
with existing TextEdit-based applications relying on the TSMTE extension to provide inline input
support. Typical uses of this callback in TextEdit-based applications include updating the scroll
bars (in case the text was scrolled or the total text height changed), keeping track of Undo
information and marking a document as “dirty”. In WASTE 1.1 you can use a scroll callback to
update scroll bars and, if you use the built-in Undo support, you can use WEGetModCount to
determine if a document has been “dirtied” by an Update Active Input Area event.

MyWENewObject

WASTE calls this application-supplied routine when a new embedded object must be created from
raw data coming from the Clipboard, from a drag or from a direct call to WEInsertObject.

pascal OSErr MyWENewObject(Point *objectSize,
WEObjectReference objectRef);

Field descriptions
objectSize The default height and width of the object.
objectRef Reference to the embedded object being created.

DESCRIPTION
WEInsertObject calls this handler when creating a new embedded object from raw data
(WEInsertObject, in turn, may be called internally by other WASTE routines, like WEPaste and
WEReceiveDrag). Your handler can examine the raw data handle (using WEGetObjectDataHandle),
manipulate it if necessary and possibly associate auxiliary data structures with the object (each

WASTE Documentation 49

50 WASTE Documentation

object has a “reference constant” that you can use for this purpose). Finally, your handler should
set *objectSize the size (height and width, in pixels) of the rectangle which is to enclose the
object when it’s drawn.

WASTE Documentation 50

51 WASTE Documentation

EXAMPLES
/* new handler for PICT objects */

pascal OSErr MyHandleNewPicture(Point *objectSize,
WEObjectReference objectRef)

{
PicHandle thePicture;
Rect theFrame;

/* get handle to object data (in this case, a picture handle) */
thePicture = (PicHandle) WEGetObjectDataHandle(objectRef);

/* figure out object size by looking at the picFrame record */
theFrame = (*thePicture)->picFrame;
OffsetRect(&theFrame, -theFrame.left, -theFrame.top);
*objectSize = botRight(theFrame);

return noErr;
}

MyWEDisposeObject

WASTE calls this application-supplied routine when it needs to delete an embedded object.

pascal OSErr MyWEDisposeObject(WEObjectReference objectRef);

Field descriptions
objectRef Reference to the embedded object being deleted.

DESCRIPTION
Your handler should do whatever action is necessary to destroy the specified embedded object,
including disposing of the data handle associated with the object and of any other additional data
structures set up by the new handler. If you don’t supply a dispose handler, WASTE will just call
DisposeHandle on the object data handle.

MyWEDrawObject

WASTE calls this application-supplied routine to draw embedded objects.

pascal OSErr MyWEDrawObject(const Rect *destRect,
WEObjectReference objectRef);

Field descriptions
destRect The rectangle in which the object must be drawn, in local coordinates.
objectRef Reference to the embedded object to draw.

DESCRIPTION
WASTE calls this handler to draw an embedded object. The QuickDraw graphics port will have
been set up correctly.

WASTE Documentation 51

52 WASTE Documentation

EXAMPLES
/* draw handler for PICT objects */

pascal OSErr MyHandleDrawPicture(const Rect *destRect,
WEObjectReference objectRef)

{
PicHandle thePicture;

/* get handle to object data (in this case, a picture handle) */
thePicture = (PicHandle) WEGetObjectDataHandle(objectRef);

/* draw the picture */
DrawPicture(thePicture, destRect);

return noErr;
}

MyWEClickObject

WASTE calls this application-supplied routine to give you a chance to intercept mouse clicks in a
selected object.

pascal Boolean MyWEClickObject(Point hitPt, short modifiers,
long clickTime, WEObjectReference objectRef);

Field descriptions
hitPt The hit point, in local coordinates.
modifiers The modifiers field of the mouse-down event record.
clickTime The when field of the mouse-down event record.
objectRef Reference to the embedded object to draw.

DESCRIPTION
WASTE calls this handler when a selected object is clicked. Your handler should determine
whether it wants to intercept the click, in which case it should return TRUE, or whether it wants
WASTE to handle the click normally, in which case it should return FALSE. Typically, your handler
will want to intercept double clicks and leave single clicks to WASTE (intercepting all clicks
indiscriminately is not a good idea, because it stops the user from starting a drag by clicking in the
selected object). To make life easier for your handlers, WASTE sets the low bit of modifiers on
double clicks.

EXAMPLES
/* click handler for sound objects */

pascal Boolean HandleClickSound(Point hitPt, short modifiers,
long clickTime, WEObjectReference objectRef)

{
SndListHandle theSound;

if (modifiers & 0x0001) // look for double-clicks
{

theSound = (SndListHandle) WEGetObjectDataHandle(objectRef);

WASTE Documentation 52

53 WASTE Documentation
SndPlay(NULL, theSound, false);
return true;

}

WASTE Documentation 53

54 WASTE Documentation
else

return false;
}

WASTE Documentation 54

55 WASTE Documentation

Distribution & Licensing

You can use the WASTE library in any way you like in freeware, shareware and commercial
programs, subject to the following conditions:

• I, Marco Piovanelli, retain all rights on the library and on the original source code.
• You expressly acknowledge and agree that use of this software is at your sole risk. This software
and the related documentation are provided “AS IS” and without warranty of any kind, express or
implied, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. Under no circumstances including negligence, shall I be liable for any
incidental, special or consequential damages that result from the use or inability to use the
software or related documentation, even if advised of the possibility of such damages.
• You give me credit in your program’s about box and/or in some other suitable place (something
like “WASTE text engine © 1993-1995 Marco Piovanelli” would be OK).
• You notify me that you’re using my code. This allows me to send updates to “registered” users
and to compile a list of users of WASTE.
• You send me a complimentary copy of the finished product, either electronically or by postal
mail. For shareware and commercial programs, this means that I get a registered copy. This item
does not apply to in-house applications.

The WASTE 1.1 package can be freely distributed in electronic form on computer networks. It
cannot, however, be distributed by other means (such as in printed form, on magnetic media or on
CD-ROM) without permission from the author. Special permission is granted to the following
companies for including the WASTE 1.1 package in their CD collections:

Pacific HiTech, Inc. Info-Mac CD-ROM
Celestin Company Apprentice

The latest version of the WASTE package can be downloaded from:

<URL:ftp://ghost.dsi.unimi.it/pub2/papers/piovanel/>

There’s even an informal mailing list dedicated to all developers working with WASTE. To join
the list, send a request to <URL:mailto:waste-request@umich.edu>.

WASTE Documentation 55

56 WASTE Documentation

Acknowledgements

I’d like to thank the following people for their help and inspiration:

• Dan Crevier, who maintains the C version of WASTE, without which WASTE could never become
popular. Dan also wrote a set of wrapper classes for the THINK Class Library, gave me many
suggestions and pointed out a number of bugs.
• Mark Alldritt, who used WASTE in his cool Script Debugger application and showed me a way
to implement tabs.
• Greg Galanos and all the good people at Metrowerks for the free copy of CodeWarrior. They’re
a great company, aren’t they?
• Matthew Xavier Mora, for nominating WASTE for the Mac Programming Award in the freeware
category.
• Michael F. Kamprath, who made a lot of questions and pointed several weaknesses.
• Mark Lanett, for a lengthy e-mail exchange about embedded objects which inspired the current
implementation.
• Alan Steremberg, for more chat about embedded objects and for maintaining the WASTE
Mailing List.
• Matsubayashi Kohji, for his careful explanation of the Japanese way of using a Macintosh and
for testing WASTE with KanjiTalk.
• Leonard Rosenthol, who suggested several improvements.
• Rick Giles, early adopter of WASTE.
• Ari Halberstadt, for his insightful comments and suggestions.
• René G.A. Ros, for all his generous aid during the past few years.
• Paul Celestin, for the complimentary copy of the Apprentice CD.
• Adrian Le Hanne, for indirectly suggesting the signature of the WASTE Demo (this is cryptic, I
know).
• Steven Stapleton and Andrew M. McKenzie, for their beautiful music.

Hardware and software used to develop WASTE:

• Macintosh IIsi 5/40
• THINK Pascal 4.0.2
• THINK C 4.0 (for the 68K assembly portions only)
• Metrowerks Pascal 1.0
• Metrowerks C/C++ 1.2
• MacsBug 6.5dx
• ResEdit 2.1.x
• Swatch 1.2.2
• Even Better Bus Error
• BBEdit Lite 3.0
• Tex-Edit 2.5
• Style 1.3

WASTE Documentation 56

